新丝路杂志    百度百科   
 
高教思政
 
 
 
 
 
 
 
 
 
 
魏宝红1 周庆2 基于Aprior的高铁旅客用户行为与需求挖掘
论文编辑部   2021-02-24 09:47:20 作者: 来源: 文字大小:[][][]

魏宝红1 周庆2
(1西安铁路职业技术学院,陕西西安  710014;2陕西易通人力资源开发有限责任公司,陕西西安  710014)
摘 要:铁路旅客出行行为分析工作是一个复杂的过程,其行为特点可以通过铁路客票数据的各种属性来体现。本论文从Aprior方法对旅客特征数据进行多角度深度挖掘分析,并以西成高铁为例,提出高铁客运营销建议。
关键词:高速铁路;旅客出行行为;客票数据
基金项目:陕西省教育厅2018年度专项科学研究计划,课题编号:18JK1110。
作者简介:魏宝红(1979--)女,陕西西安市人,讲师,硕士研究生,西安铁路职业技术学院交通运输学院,讲师,研究方向:高铁客运乘务。

一、引言
随着市场经济的深入,铁路运输企业如何能把握住市场脉搏,满足旅客对出行交通工具和旅途服务的需求,赢得运输市场,提高铁路运营效率,是摆在铁路部门面前的关键问题,旅客出行行为研究就显得非常重要。为了准确地研究其行为,笔者采用Aprior方法从模糊的、随机的实际应用数据中提取隐含的、有用的信息。通过对大量业务数据进行抽取、转换和处理,从中提取辅助管理决策的关键性数据,对旅客进行细分,以地域、收入水平、偏好等大量的旅客归类,明确旅客服务增殖的目标乘客。
该论文以西成高铁客运通道为例,对西成高铁的旅客特征和乘客价值进行分析,利用Aprior技术探讨高铁旅客用户行为和需求,为铁路运输管理者建言献策,也为日后其他高铁客运专线运营提供参考价值。
旅客出行行为是指旅客为某一目的出行(通勤、探亲、出差、休闲)乘坐高铁从出发地到目的地的移动的行为。本研究于2019年11月和12月期间,收集了西成高铁在该年的11月1日至11月30日铁路客户服务中心系统后台日志数据,所获取的数据跨越30天,数据总量共达到了3.67GB。该系统的日志数据详细记录了旅客乘坐西成高铁的出行及获得相关服务的信息,如旅客证件信息、旅客进出站记录、购票记录、改签及退换票记录、接入网络的IP地址及终端信息、乘坐车次、列车发车时间、旅客使用高铁订餐相关服务的记录等。
二、数据处理
为进一步明确西成高铁旅客用户行为与其对西成高铁服务的需求,我们从中筛选了部分利用西成高铁增值服务比较频繁的旅客用户,对其利用西成高铁增值服务的相关数据信息进行了获取与挖掘。通过对用户登陆铁路服务系统以及车站安检系统中的用户行为数据与其IP地址和其预留在中铁路服务系统中的个人身份信息进行匹配,我们获得了用户个人信息、用户使用高铁服务的信息,这些数据约占到了总记录数的32.75%。用户通过铁路服务系统所能够获得的高铁服务主要有车票查询服务、列车运行信息查询服务、人工售票服务、自助售票服务、人工检票服务、自助检票服务、便捷通道服务、站内咨询服务、餐饮服务、商品零售服务、WIFI与电源服务、医疗服务、睡眠胶囊服务、时刻表售卖服务、托运服务、休闲娱乐服务等服务。
三、分析流程
Aprior算法的基本思想是以递归的方式反映从数据集中寻找出现频次多的项集,进而产生选项集,对达到最小支持度要求的候选项集进行保留,而删除那些不满足要求的数据。在该算法执行的过程中,通常将最大前项数据的阈值设置为1,而小最置信度数据设置为10%,其具体流程如图1所示。

图1  基于Aprior算法流程图
四、关联规则分析结果
表1显示了基于Aprior算法的西成高铁旅客用户数据聚类结果。可以看出通过数据聚类,铁路服务系统各项服务之间的关联规则被揭示出来。车票查询和自助售票两项服务之间的关联性最强,其次是列车运行和车票查询两项服务,再次是自助售票和自助检票,说明旅客用户利用西成高铁出行最基本的几项服务之间具有比较高的关联性,并且也是置信度最高的几项关联规则,这说明西成高铁的大部分旅客用户在利用铁路服务系统进行车票与列车相关查询操作后,会选择优先到车站的自助设备上完成购票、取票或检票等操作,西成高铁若要宣传和推广自身的增值服务,将这些基本服务与增值服务建立起相应的关联关系是当务之急。置信度比较高的关联规则还有便捷通道和托运服务之间关联规则,说明西成高铁的许多旅客用户在选择通过车站提供的便捷通道进入候车区域后,还会选择将使用车站提供的托运服务使自己享受到进一步的便捷服务。此外,我们还发现了便捷通道与休闲娱乐、站内咨询与餐饮服务、休闲娱乐与WIFI电源、商品零售与休闲娱乐、列车运行与托运服务、自助检票与WIFI电源等服务之间关联性,这些关联规则的揭示,都有利于西成高铁对当前的系统与服务进行改进,更好地提升用户对西成高铁服务的利用率。
表1  关联规则发现的高铁增值业务
后项 前项 支持度(%) 置信度(%)
车票查询 自助售票 27.24 65.07
列车运行 车票查询 16.3 32.89
自助售票 自助检票 8.33 211.18
便捷通道 休闲娱乐 2.53 14.29
站内咨询 餐饮服务 2.53 11.55
休闲娱乐 WIF电源 1.71 15.78
商品零售 休闲娱乐 1.71 13.64
便捷通道 托运服务 0.63 29.93
列车运行 托运服务 0.63 17.15
自助检票 WIF电源 0.63 13.14
五、结论
总体来看,本研究运用K-means算法和Aprior算法对西成高铁旅客用户的出行及其活动行为进行分析,揭示了西成高铁旅客用户行为与需求进行了挖掘。通过K-means算法进行聚类分析,我们得出了六个类:第1类用户对西成高铁路服务系统的利用及其出行行为与活动处于中等水平,其目的主要以一般服务的使用为主,这类旅客用户对西成高铁增值服务的使用频次并不高,因此西成高铁可重点关注这类用户在出行目的地及其在出行过程中的服务使用记录,有针对性地为这些旅客推荐一些出行或休闲相关的信息,以使满足这类旅客用户的出行需求;第2类旅客用户的出行次数以及出行中的活动行为数量都相对较少,且增值服务使用行为所占的比重相对较高,其桌面端的用户占多数,这与本研究之前所得出的结论保持一致。针对这类用户,西成高铁在进行高铁服务精确推送的同时,还可通过各种系统服务平台与短信等渠道为其推荐更多的服务、资源供其选择;第3类仅包含26个记录,且该聚类下的一般服务使用次数、增值服务使用次数、出行中的活动次数、活动持续时间、利用高铁服务数量的值均要远大于其他五个类,该类存在异常的情况,故而舍去;第4类和第5类用户属于两类行为相反的用户群,第4类的用户属于以一般服务使用为主要目的,主要利用桌面端设备进行操作,会在铁路服务系统中留下比较多的服务使用记录,以获取精确的服务项目的用户群,该类用户进行其他的情况相对较少,而第5类的用户属于更愿意利用铁路服务系统中其他服务的用户,这类用户以利用智能设备为主;第6类用户一般服务行为和增值服务使用行为的频次上都不算多,但其活动记录的次数却达到了117.54次,说明这类用户比较喜欢漫无目的在铁路服务系统进行相关无关操作,这类用户利用西成高铁出行的需求并不明确,需要为之提供必要的指导。
另外,从基于Aprior算法的西成高铁旅客用户数据聚类结果揭示的各项服务之间的关联规则来看,车票查询和自助售票两项服务之间的关联性最强,其次是列车运行和车票查询两项服务,再次是自助售票和自助检票,说明旅客用户利用西成高铁出行最基本的几项服务之间具有比较高的关联性,并且也是置信度最高的几项关联规则。置信度比较高的关联规则还有便捷通道和托运服务之间关联规则,说明西成高铁的许多旅客用户在选择通过车站提供的便捷通道进入候车区域后,还会选择将使用车站提供的托运服务使自己享受到进一步的便捷服务。这些关联规则的揭示,都有利于西成高铁对当前的系统与服务进行改进,更好地提升用户对西成高铁服务的利用率。

参考文献:
[1]李明琨、鹿艳、张佳玮.基于市场细分的我国高速铁路客运定价方法与策略[J].价格月刊,2015(7):12-15
[2]姚加林、赵思源.大型高铁车站最高聚集人数计算模型研究[J].铁道科学与工程学报,2019.16(01):40-47
[3]张永、朱建生、吕晓艳、et al.高铁列车停靠站客票收入率分类及收入预测研究[J].铁道学报,2018
[4]袁隽[1、2]、赵烁[1]、李丽辉[3]、et al.高铁列车密度与旅客需求强度的关联分析[J].铁道科学与工程学报,2018
[5]王海湘.铁路客运服务质量评价体系的研究[D].长沙:中南大学硕士论文,2013

 

 

编辑部投稿邮箱:tougao85@163.com  tougao58@163.com

编辑部投稿热线:029-87362792  13309215487

24小时查稿专线:13309215487(同微信)

编辑部投稿QQ:693891972   1071617352

最新评论
发表评论
评论标题
评论内容
图片上传
表情图标

 
李涵伟 少数民族权利保 
丁丹丹 汪满生 “思想 
刘斌 薛琪 人民法院司 
魏明英 关于完善我国个 
许薇薇 疫情防控与个人 


徐雯瑛 任思潼 “云支 
陈嘉群 易地扶贫搬迁安 
李玉冰 孙一凡 李玉洁  
崔悦震1 王健2 金伟3 
刘雅芳 后脱贫时代发展 
杂志简介 稿件要求 汇款方式 联系方式

CopyRight (C)2005-2015 Www.xinxi86.Com  All Rights Reserved..  陕ICP备15009280号
所有论文资料均源于网上的共享资源及期刊共享,请特别注意勿做其他非法用途
如有侵犯您论文的版权或其他有损您利益的行为,请联系指出,论文网在线会立即进行改正或删除有关内容